

T.C. Awes, ORNL

AGS Users Meeting, EM Radiation / Low Mass Dileptons Workshop, June 5, 2006

CERN results and future prospects

- Early Prospecting (SPS)
 - o Coming up empty
 - o Making something of nothing
 - o All that glitters is not gold
- Prospects for RHIC and the LHC

Photons: Continuum Spectrum with Many Sources

First Results: Measuring Nothin'

p,O,S + Pt, W: Integral limit γ/π^- in $0.1 < p_T < 1.5$ GeV/c Z. Phys C **46**, 369 (1990)

Measuring "Nothing" better: First HI "Result"

- Initial Expectations (pre-experiment):
- (~Handwaving arguments..)
 - * Chiral symmetry restored
 - * Lots of q+g scatterings
 - * QM rates greater than HM (false)

Expect lots of Thermal γ Radiation as a signature of Quark Gluon Plasma!

- No γ excess observed in S+Au @SPS
 - * If thermalized, result implies "low" initial Temperature.
 - * Given large initial energy density, result implies large # d.o.f. As in a QGP!

Lack of Thermal γ is a signature of QGP!

Ahh, but a $\pi+\rho$ hadron gas is too naïve - Must consider d.o.f. of full hadron mass spectrum... It is a "significant" result - system produced has large number of d.o.f.

Deconfinement and High Energy Nuclear Collisions

Lattice QCD predicts a sharp rise in the number of degrees of freedom (naively thought of as hadrons to quarks and gluons), the deconfinement phase transition.

Pion gas is ruled out - but what about HRG?

Experimentally, a combination of energy density and temperature measurements (thermal γ radiation) can map out the transition.

7

Heavy Ions at SPS: Pb+Pb 158AGeV

WA98 - LEDA event display

Pb + Pb 160 A GeV central

Nov. 3, 1995 - Run 0001 - Evi Nr. 00001

Central Pb+Pb: A Direct y Signal!

- Compare to proton-induced prompt γ results:
 - * Assume hard process scale with the number of binary collisions (=660 for central).
 - * Assume invariant yield has form $f(x_T)/s^2$ where $x_T=2p_T/s^{1/2}$ for $s^{1/2}$ -scaling.
- Factor ~2 variation in p-induced results.
- For Pb+Pb, similar γ
 spectral shape, but factor
 ~2-3 enhanced yield.

9 8

Direct y: Comparison to pQCD Calculation

- NLO pQCD calculations factor of 2-5 below $s^{1/2} = 19.4$ GeV p-induced prompt γ results.
- But p-induced can be reproduced by effective NLO (K-factor introduced) if intrinsic k_T is included.
- Same calculation at $s^{1/2}=17.3$ GeV reproduces p-induced result scaled to $s^{1/2}=17.3$ GeV
- Similar γ spectrum shape for Pb case, but factor ~2-3 enhanced yield.

WA98 Interpretation: T or k_T ?

- QGP + HG rates convoluted with simple fireball model plus pQCD hard photons
- Data described with initial temperature T_i =205 MeV + some additional A+A nuclear k_T broadening (Cronin-effect)
 - Data also described without $k_{\rm T}$ broadening but with high initial temperature

$$(T_{\rm i} = 270 {\rm MeV})$$

Turbide, Rapp, Gale, Phys. Rev. C 69 (014902), 2004

Continuum Dileptons at SPS: CERES/NA45

Low-mass dileptons observed in S+Au at a rate above Dalitz decays.

"The plot that launched a thousand papers." 368 citations actually (Cf: 445+-65 pairs)

CERES PRL 75, 1272 (1995)

Originally thought to be the result of restoration of chiral symmetry in QGP.

Current wisdom is that a dense hadron gas can produce the excess.

R. Rapp hep-ph/0201101

NA60: Low Mass μ-pairs In+In 158A GeV

- ω and φ: yields fixed to obtain, after subtraction, a smooth underlying continuum
- η: set upper limit by "saturating" the yield in the mass region 0.2–0.3 GeV
- ⇒ leads to a lower limit for the excess at low mass

From E.Scomparin, QM2005

Low mass: Comparison with models

Predictions for In+In by Rapp et al. (2003) for $< dN_{ch}/d\eta > = 140$

Theoretical yields folded with NA60 acceptance and normalized to data in the mass window $m_{\mu\mu}$ < 0.9 GeV

- Excess shape consistent with broadening of the ρ (Rapp-Wambach)
- Models predicting a mass shift (Brown-Rho) ruled out (NA60 statement!)

Continuum Dileptons in Intermediate Mass Region (IMR) 1<M < 3 GeV : NA50

NA50 Eur Phys J C14 (2000) 443 R. Rapp hep-ph/0201101 Dileptons in the intermediate mass range M_{ϕ} <m $_{\mu\mu}$ <M $_{J/\Psi}$ are also candidates for thermal radiation.

Apparent excess by factor of ~2, can be explained as thermal from hadron gas phase.

But there is an alternative explanation as enhanced production of open charm.

NA60 IMR: Is an excess present?

- Open charm and Drell-Yan generated with PYTHIA
- Drell-Yan normalization fixed using the high mass region
- Open charm normalization: use
 - ⇒ NA50 p-A result (better control of systematics related to μμ channel)
 - ⇒ World-average cc cross section (based on direct charm measurements) (differ by a factor ~ 2)

• Answer: Yes, an excess in the IMR is clearly present (same order of magnitude as the NA50 result)

IMR: Measuring the muon vertex offset

As in NA50, the mass shape of the In+In excess is compatible with open charm \Rightarrow not conclusive, muon offset information needed

Muons from D -> μ + X do not converge to the interaction vertex

Typical offset of muons:

 $D^+: c\tau = 312 \,\mu m$

 $D^{o} : c\tau = 123 \mu m$

• Muon offsets: ΔX , ΔY between the vertex and the track impact point in the transverse plane at Z_{vertex} $\Delta_{\mu} \Rightarrow$ offset weighted by the covariance matrices of the vertex and of the muon track

Offset resolution $\sim 40-50 \mu m$ (measured with J/ ψ data)

IMR: Is the excess due to open charm?

Fit IMR Δ_{μ} distribution fixing prompt contribution to the expected Drell-Yan yield

IMR: is the excess due to prompt dimuons?

 \Rightarrow Fit IMR Δ_{μ} distribution fixing open charm contribution to the expected value (from NA50 p+A)

Answer: Yes, the excess seen in In+In is prompt, not charm.

Mass shape of the IMR excess

Excess/Drell Yan

The mass distribution of the excess is steeper than Drell-Yan (and flatter than open charm) -

But sensitive to $T_i!$ ($T_i = 220 \text{MeV}$)

Conclusions from SPS measurements

- Real and virtual γ excesses observed, but many sources of theoretical uncertainty:
 - * pQCD γ reference: intrinsic k_T , k_T broadening
 - * Non-thermal contributions
 - * QM γ rates: (under control!)
 - * HM γ rates: in-medium masses
 - * Hydrodynamic evolution: flow
- Further experimental constraints:
 - * Hadron spectra to fully constrain hydro calculations
 - * Need p+p and pA results to validate pQCD calculations
- Improved understanding from RHIC measurements should feedback to improve understanding at SPS
 - * p+p and p+A measurements
 - * Low energy runs

Thermal γ : Expectations for RHIC & LHC

- At RHIC & LHC the \overline{HG} contribution dominates over the \overline{QGP} contribution for p_T <1 GeV/c
- At RHIC & LHC (&SPS) the HG contribution dominates over the pQCD contribution for p_T < 2 GeV/c
- Window to see QGP radiation dominantly in region 1 GeV/c <p_T $< \sim 3$ (RHIC) ~ 5 (LHC) GeV/c?

Turbide, Rapp, Gale PRC 69 (2004) 014903

Direct y: Other effects for RHIC & LHC

- At low p_T a large fraction of direct γ due to Bremsstrahlung in the Fragmentation process. At RHIC & LHC parton energy loss should reduce this contribution.
- On the other hand, one expects additional γ radiation from jet due to passage through QGP. This contribution is expected to dominate below 6-8 GeV/c.
- We've lost the pQCD γ "reference" again!

Fries, Muller, Srivastava PRL 90 (2003) 132301

Measuring Thermal Photons at RHIC...

PHENIX PRL 94 (2005) 232301

- NLO pQCD predictions consistent with observed excess to low p_T
- What about modifications to Bremsstrahlung contribution???
- Wide range of thermal "predictions" (T_i= 300-600 MeV!) consistent with measurement.
- Experimental uncertainties need to be improved significantly.
- Theoretical "freedom" must be decreased also.

Limitations of Statistical Method

- Excess is small (~10%) in comparison to γ from decays. If errors reach R=1 then lower error on γ yield extends to zero.
- Need to improve errors.
- Alternative methods:
 - * Virtual photons (Torsten's talk)
 - * γ–γ HBT T.C.Awes

Direct γ Yield via $\gamma - \gamma$ HBT Correlations: Pb+Pb@SPS

T.C.Awes

Pure BE effect - no Coulomb, no FSI

 2λ = fraction of γ pairs which are Direct (2 polarizations) Direct $\gamma = \sqrt{2\lambda} * Total \gamma$

With calorimeter only possible at low K_T since $Q_{inv} \sim K_T \times \Delta L$

For close shower separation ΔL background sources from:

- > False splitting of showers
- > Photon conversions

A "bold" calorimeter measurement!!! Must make min distance cut ΔL_{min}

WA98, PRL 93 (2004) 022301.

Analysis: D.Peressounko

ΔL_{min} Dependence of $\gamma - \gamma$ Correlation Strength λ

Since $Q_{inv} \sim K_T \times \Delta L_{min}$ a cut on ΔL_{min} has similar effect as restricting the fit to region above Q_{min} .

Stable fit results with $\Delta L_{min} > 35$ cm cut or by restricting Q_{inv} fit region. Similar result for R_{inv} .

Implies region free of background and detector effects.

Dependence of $\gamma - \gamma$ HBT Parameters on γ PID

- Vary γ shower identification criteria to vary non-γ background fraction:
 - 37% and 22% charged bkgd for 2 K_T bins with All showers
 - 16% and 4% with Narrow showers
 - <2% with charge veto
- If correlation due to background, it should be strongly affected by PID cuts.
- Observe no dependence on PID cuts which indicates a true γ - γ correlation.
- $R_{inv} \sim 5-6 \text{ fm}$
- Compare $R_{inv}(\pi^{-})=6.6-7.1 \text{ fm}$

Direct y Yield via y-y HBT Correlations

Two new low p_T direct γ points from λ of γ - γ correlation.

Fireball model predictions:

Turbide, Rapp, Gale PRC 69 (2004) 014903. Latest in Hadronic rates, pQCD + k_T broadening, T_i =205 MeV, T_c =175MeV

Low p_T region dominated by Hadron Gas phase. Additional Brems. in HG (Rapp et al.).

Better way to do this is to use γ+(e+e-) HBT - PHENIX.

Direct γ , π^0 at LHC

Large direct γ rates to ~100 GeV/c, large π^0 suppression expected.

Direct γ measurements will provide a powerful probe at LHC, especially to diagnose the jet quenching phenomena.

M.Gyulassy, I.Vitev, (pQCD). QM'92

I.Vitev, M.Gyulassy PRL 89 252301 (2002)

Summary and Conclusions

- Direct γ signal observed at SPS in Pb+Pb collisions possibly explained by EOS with QGP, but also consistent with HG But large #d.o.f.! Problem: poor pQCD understanding: intrinsic k_T effects, etc.
- Taken together, the direct γ signal and intermediate mass dilepton excess in central A+A collisions at SPS can be explained consistently with thermal emission, dominantly from HG, but with initial temperature of $T_i \sim 220$ MeV, i.e. $T_i > T_c$
- Direct γ signal observed at RHIC in Au+Au scales with N_{Binary}
 - NLO pQCD works too well, given other expected effects.
 - \bullet Extraction of thermal γ component will be very difficult, due to small signal and large competing effects on fragmentation contribution.
- Studies of jet energy loss with γ +jet will be "the measurement" to do at LHC.

31